(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
div(x, s(y)) → d(x, s(y), 0)
d(x, s(y), z) → cond(ge(x, z), x, y, z)
cond(true, x, y, z) → s(d(x, s(y), plus(s(y), z)))
cond(false, x, y, z) → 0
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ge(s(u), s(v)) →+ ge(u, v)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [u / s(u), v / s(v)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
div(x, s(y)) → d(x, s(y), 0')
d(x, s(y), z) → cond(ge(x, z), x, y, z)
cond(true, x, y, z) → s(d(x, s(y), plus(s(y), z)))
cond(false, x, y, z) → 0'
ge(u, 0') → true
ge(0', s(v)) → false
ge(s(u), s(v)) → ge(u, v)
plus(n, 0') → n
plus(n, s(m)) → s(plus(n, m))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
div(x, s(y)) → d(x, s(y), 0')
d(x, s(y), z) → cond(ge(x, z), x, y, z)
cond(true, x, y, z) → s(d(x, s(y), plus(s(y), z)))
cond(false, x, y, z) → 0'
ge(u, 0') → true
ge(0', s(v)) → false
ge(s(u), s(v)) → ge(u, v)
plus(n, 0') → n
plus(n, s(m)) → s(plus(n, m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
d,
ge,
plusThey will be analysed ascendingly in the following order:
ge < d
plus < d
(8) Obligation:
TRS:
Rules:
div(
x,
s(
y)) →
d(
x,
s(
y),
0')
d(
x,
s(
y),
z) →
cond(
ge(
x,
z),
x,
y,
z)
cond(
true,
x,
y,
z) →
s(
d(
x,
s(
y),
plus(
s(
y),
z)))
cond(
false,
x,
y,
z) →
0'ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
ge, d, plus
They will be analysed ascendingly in the following order:
ge < d
plus < d
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_s:0'3_0(
n5_0),
gen_s:0'3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
div(
x,
s(
y)) →
d(
x,
s(
y),
0')
d(
x,
s(
y),
z) →
cond(
ge(
x,
z),
x,
y,
z)
cond(
true,
x,
y,
z) →
s(
d(
x,
s(
y),
plus(
s(
y),
z)))
cond(
false,
x,
y,
z) →
0'ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
plus, d
They will be analysed ascendingly in the following order:
plus < d
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0'3_0(
a),
gen_s:0'3_0(
n270_0)) →
gen_s:0'3_0(
+(
n270_0,
a)), rt ∈ Ω(1 + n270
0)
Induction Base:
plus(gen_s:0'3_0(a), gen_s:0'3_0(0)) →RΩ(1)
gen_s:0'3_0(a)
Induction Step:
plus(gen_s:0'3_0(a), gen_s:0'3_0(+(n270_0, 1))) →RΩ(1)
s(plus(gen_s:0'3_0(a), gen_s:0'3_0(n270_0))) →IH
s(gen_s:0'3_0(+(a, c271_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
div(
x,
s(
y)) →
d(
x,
s(
y),
0')
d(
x,
s(
y),
z) →
cond(
ge(
x,
z),
x,
y,
z)
cond(
true,
x,
y,
z) →
s(
d(
x,
s(
y),
plus(
s(
y),
z)))
cond(
false,
x,
y,
z) →
0'ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n270_0)) → gen_s:0'3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
d
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol d.
(16) Obligation:
TRS:
Rules:
div(
x,
s(
y)) →
d(
x,
s(
y),
0')
d(
x,
s(
y),
z) →
cond(
ge(
x,
z),
x,
y,
z)
cond(
true,
x,
y,
z) →
s(
d(
x,
s(
y),
plus(
s(
y),
z)))
cond(
false,
x,
y,
z) →
0'ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n270_0)) → gen_s:0'3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
div(
x,
s(
y)) →
d(
x,
s(
y),
0')
d(
x,
s(
y),
z) →
cond(
ge(
x,
z),
x,
y,
z)
cond(
true,
x,
y,
z) →
s(
d(
x,
s(
y),
plus(
s(
y),
z)))
cond(
false,
x,
y,
z) →
0'ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
plus(gen_s:0'3_0(a), gen_s:0'3_0(n270_0)) → gen_s:0'3_0(+(n270_0, a)), rt ∈ Ω(1 + n2700)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
div(
x,
s(
y)) →
d(
x,
s(
y),
0')
d(
x,
s(
y),
z) →
cond(
ge(
x,
z),
x,
y,
z)
cond(
true,
x,
y,
z) →
s(
d(
x,
s(
y),
plus(
s(
y),
z)))
cond(
false,
x,
y,
z) →
0'ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
plus(
n,
0') →
nplus(
n,
s(
m)) →
s(
plus(
n,
m))
Types:
div :: s:0' → s:0' → s:0'
s :: s:0' → s:0'
d :: s:0' → s:0' → s:0' → s:0'
0' :: s:0'
cond :: true:false → s:0' → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → true:false
true :: true:false
plus :: s:0' → s:0' → s:0'
false :: true:false
hole_s:0'1_0 :: s:0'
hole_true:false2_0 :: true:false
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(24) BOUNDS(n^1, INF)